Linear-time option pricing algorithms by combinatorics
نویسندگان
چکیده
منابع مشابه
Linear-time option pricing algorithms by combinatorics
Options are popular financial derivatives that play essential roles in financial markets. How to price them efficiently and accurately is very important both in theory and practice. Options are often priced by the lattice model. Although the prices computed by the lattice converge to the theoretical option value under the continuous-time model, they may converge slowly. Worse, for some options ...
متن کاملDeveloping Efficient Option Pricing Algorithms by Combinatorial Techniques
How to price options efficiently and accurately is an important research problem. Options can be priced by the lattice model. Although the pricing results converge to the theoretical option value, the prices do not converge monotonically. Worse, for some options like barrier-options, the prices can oscillate significantly. Thus, large computational time may be required to achieve acceptable acc...
متن کاملOn Accurate Trinomial GARCH Option Pricing Algorithms
The GARCH model has been successful in describing the volatility dynamics of asset return series. However, tree-based GARCH option pricing algorithms suffer from exponential running time, inaccuracy, or other problems. Lyuu and Wu proved that the trinomial-tree option pricing algorithms of Ritchken and Trevor (1999) and Cakici and Topyan (2000) explode exponentially when the number of partition...
متن کاملNonparametric Option Pricing by Transformation
This paper develops a nonparametric option pricing theory and numerical method for European, American and path-dependent derivatives. In contrast to the nonparametric curve fitting techniques commonly seen in the literature, this nonparametric pricing theory is more in line with the canonical valuation method developed Stutzer (1996) for pricing options with only a sample of asset returns. Unli...
متن کاملTime-Changed Lévy Processes and Option Pricing
The classic Black-Scholes option pricing model assumes that returns follow Brownian motion, but return processes differ from this benchmark in at least three important ways. First, asset prices jump, leading to non-normal return innovations. Second, return volatilities vary stochastically over time. Third, returns and their volatilities are correlated, often negatively for equities. Time-change...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2008
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2007.08.046